Kids in Danger Zones

One in Three U.S. Schoolchildren at Risk from Chemical Catastrophes

AUTHORS

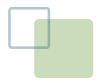
Amanda Frank, Policy Analyst, Citizen Health & Safety Sean Moulton, Director of Open Government Policy

CONTRIBUTORS

Denise Moore, Database Administrator Katherine McFate, President and CEO Brian Gumm, Communications Director Lukas Autenried, Open Government Intern July Tran, Regulatory Policy Intern

PHOTO CREDITS

Flickr user Presidio of Monterey (Creative Commons)
Flickr user smi23le (Creative Commons)
Flickr user Jonas Bengtsson (Creative Commons)


ACKNOWLEDGEMENTS

The Center for Effective Government's work on chemical safety issues is made possible by the generous support of the Bauman Foundation, Ford Foundation, Open Society Foundations, Cornell Douglas Foundation, Rockefeller Brothers Fund, Scherman Foundation, SR Mott, and anonymous donors.

ABOUT THE CENTER FOR EFFECTIVE GOVERNMENT

The Center for Effective Government works to build an open, accountable government that invests in the common good, protects people and the environment, and advances the national priorities defined by an active, informed citizenry.

Individuals and organizations wishing to quote, post, reprint, or otherwise redistribute this report, in whole or in part, are permitted to do so if they provide attribution to the Center for Effective Government as the original publisher. To contribute to the Center for Effective Government, please visit http://community.foreffectivegov.org/donate.

Kids in Danger Zones

One in Three U.S. Schoolchildren at Risk from Chemical Catastrophes

TABLE OF CONTENTS

Executive Summary	1
Introduction	5
What Did We Find?	7
1. Risk Broadly Dispersed and Concentrated in Some Areas	7
2. The Riskiest Facilities	12
3. The Chemicals that Create Risk, Less Dangerous Alternatives	15
How We Can Make Our Children Safer	17
Appendix I: Methodology	21
1. Previous Analysis	22
Appendix II: Table A - Number of Students in Vulnerability Zones, by State	24
Appendix III: Table B - Percentage of Students in Vulnerability Zones, by State	26
Appendix IV: Table C - Facilities that Put 200,000 or More Students at Risk	28
Appendix V: Number of RMP Facilities and Vulnerability Zone Populations in This	31

EXECUTIVE SUMMARY

Shortly before 8 p.m. on April 17, 2013, a fertilizer storage and distribution facility in West, Texas exploded, killing 15 people, injuring more than 200, and destroying over 150 buildings, including three schools. Had the explosion occurred during the day, scores of children could have died.

This is not an isolated case. In August 2012, the release of a toxic cloud from a Chevron refinery sent 15,000 residents of Richmond, California to the hospital with respiratory problems. In January 2014, toxic chemicals used in coal processing leaked into the Elk River in West Virginia, contaminating the water of 300,000 people in nine counties.

Hazardous facilities are reporting safety incidents every day. With an aging industrial infrastructure in close proximity to major population centers, and fewer state and federal staff to inspect these facilities, the risks are growing.

But we can change this. There are practical, immediate steps we can take to reduce the chemical hazards in communities across the country and to reduce the risks our children face. This report discusses these steps and actions individual people can take to ensure they happen.

Kids in Danger Zones examines the number of children who attend a school located within the self-reported vulnerability zone of over 3,400 high-risk chemical facilities in the U.S. These facilities produce, use, or store dangerous chemicals and so must report them to the federal Risk Management Program of the U.S. Environmental Protection Agency (EPA). The facilities that are the focus of this study represent about a quarter of all the facilities reporting to the Risk Management Program. The locations of 122,968 public and private schools, educating 53.6 million students, were mapped against the vulnerability zones of these chemical facilities.

What we found is alarming:

At least one in every three schoolchildren in America today (36 percent of pre-kindergarten through high school students) attends a school within the vulnerability zone of a hazardous chemical facility. Over 19.6 million children in 48 states are in such a zone. Most of the children, their parents, and their teachers have no idea that they are at risk. [For state figures, see Appendices II and III, Tables A and B]

- ➤ Half of these children (over 10.3 million) are in schools located in more than one chemical vulnerability zone. The most at-risk school San Jacinto Elementary School in Deer Park, Texas is located in the vulnerability zones of 41 different chemical facilities.
- ➤ Houston, Texas; Baton Rouge, Louisiana; and Beaumont-Port Arthur, Texas are the most high-risk metro areas i.e., they contain many schools in multiple vulnerability zones. Memphis, Tennessee and Wilmington, Delaware also have many schools located in multiple vulnerability zones. [See map on p. 12]
- > Every single child attending school in 102 counties in 22 states, a total of over 2.3 million kids, are in the chemical vulnerability zone of at least one facility. The states with the most high-risk counties are Texas, Virginia, Kentucky, and Louisiana.
- ➤ Ten high-risk chemical facilities reported having a vulnerability zone that exposes over 500,000 children to chemical risks. These facilities are located in New Jersey, Texas, California, and Illinois. The Kuehne Chemical Company in South Kearny, New Jersey, reported a 14-mile vulnerability zone because it has up to 2 million pounds of chlorine onsite. Depending on wind and weather conditions, an accident involving chlorine gas could expose over 861,000 children in Manhattan, Newark, and Jersey City to toxic vapors and respiratory damage.

Another 32 facilities located in New Jersey, Texas, California, Illinois, Florida, Arizona, and Minnesota reported individual danger zones that put between 250,000 and 500,000 children at risk.

- > Sixty percent or more of the students attending school in the states of Utah, Rhode Island, Texas, Louisiana, and Nevada are in vulnerability zones, as well as more than half the students in Delaware and Florida.
- > California, Texas, Florida, Illinois, and New York have the largest number of students at risk because they have the largest number of students overall and chemical facilities located in or near major metropolitan areas. [For more detailed information on specific states and cities, see state-specific fact sheets.]

What We Can Do to Keep Our Children Safe

We can make our children safer without shutting down industrial production or losing jobs.

- The most effective way to protect our children from chemical disasters is to require companies to use safer chemical alternatives when they are available. Many are already doing so. Bleach manufacturing and water and wastewater treatment plants represent over 60 percent of the facilities in this study. Chlorine is the most common toxic chemical they use. There are cost-effective alternatives to chlorine gas. In fact, the Clorox Company began shifting away from the use of chlorine gas years ago. As a result, 13 million Americans are no longer in vulnerability zones associated with their plants. The Blue Plains water treatment plant that serves Washington, DC switched from chlorine gas to liquid bleach shortly after the 9/11 terrorist attacks and reduced the risk to 1.7 million people.
- Facilities can shrink their vulnerability zones by reducing the amount of toxins produced or stored onsite. Facilities could produce and ship their products in smaller batches instead of accumulating large quantities on worksites near major population centers. Reducing the size of all the vulnerability zones mapped in our study by half would protect 11 million children.
- New facilities with dangerous chemicals should not be sited near major population centers or probable growth areas around metropolitan areas. We don't have to keep making the same mistakes. New facilities should commit to the safest available technologies and chemicals and be located away from population centers, with established buffer zones to prevent residential development too close to the facilities. In some areas, this may require changes to zoning laws.

What can you do to reduce the vulnerability of all American schoolchildren?

The Obama administration is in the midst of exploring new rules to govern the handling and safety of hazardous chemicals. Write to the EPA and ask the agency to develop rules that contain the demands above.

What can you do to reduce the vulnerability of schoolchildren in your community?

- Educate people in your school district, community, and state about the risks of chemical disasters.
 - Share this report and the <u>interactive map</u> with your friends, relatives, and neighbors so they can see the risks to <u>their own schools and communities</u>.
 - Talk to your PTA or PTO encourage teachers to use our <u>curriculum</u> to explore the issue of chemical risk and ways everyday citizens can make their communities safer.
 - Write a <u>letter to the editor</u> of your local paper.

Advocate for policy changes on the local, state, and federal levels.

- Ask your city council representative to pass a resolution supporting the shift to safer chemical alternatives.
- Ask your state representatives to require the use of safer chemicals at facilities located near you.
- <u>Contact your state's environmental agency</u> and ask staff to hold a hearing and/or to send a comment to the federal EPA about reducing risks in your community.
- Tell Congress to <u>support new requirements</u> to shift to safer chemical alternatives.
- Register to vote and encourage candidates to support improved safety and better protections for children.
- Encourage the individual companies that put your schools at risk to voluntarily shift to safer alternatives and to reduce their "vulnerability footprint" by reducing the amount of dangerous chemicals they produce and store at a facility near you.
 - The <u>interactive risk map</u> allows you to find the name of the company at the center of each vulnerability zone, its address, and the amount of chemicals it stores. This should give you enough information to contact the facility and arrange a meeting. You can also use the information to launch a local letter-writing campaign and/or encourage a local reporter to investigate this issue. You can look up each facility's enforcement record with <u>EPA</u> or <u>OSHA</u> to see if they have been cited for health and safety violations. Additionally, the <u>Corporate Research Project</u> may provide useful information on the corporate owners of particular facilities.

> Prepare school staff and children should a chemical event occur.

• Each facility in this report is supposed to have a Risk Management Plan on record with the first responders and emergency management officials in your community. Ask your local first responders to come to the schools in your area and conduct a drill or to talk to your PTA and explain emergency procedures so everyone knows the plan in the event of a disaster. Eastern Kentucky University has produced a guide for developing an emergency action plan for schools that includes a wide variety of emergencies, including hazardous material releases.

INTRODUCTION

We value our children and do everything we can to keep them safe. We demand food labels, inspect imported toys, and require car seats for infants and toddlers. We require lead-free paint and unleaded gasoline to protect their developing brains. We monitor the quality of their drinking water. We insist that restaurants are clean, playground equipment is safe, and pajamas aren't flammable. And when we send them to school, we want crossing guards, school nurses, reliable buses, recess monitors, and fire drills.

We've passed a number of important laws to protect the health and safety of our families and children over the years – the Pure Food and Drug Act, the Clean Air Act, the Clean Water Act, the Safe Drinking Water Act, and the Food Safety Modernization Act. But one area that has proved surprisingly resistant to effective oversight is toxic chemicals.

The Toxic Substances Control Act was passed in 1976 to regulate the use and distribution of harmful chemicals, but almost 40 years later, only 200 of the more than 84,000 chemicals currently registered for use in the U.S. have been thoroughly tested to determine their impact on human health. And only five of the chemicals shown to have a negative impact on health have actually been restricted. Literally tons of inadequately tested, potentially harmful chemicals and known human toxins are in use in industrial production sites and storage facilities across the country. These stocks of toxic chemicals represent a looming, silent risk in communities nationwide.

The risk only becomes visible when catastrophes occur – like the chemical cloud that escaped from a Chevron refinery in 2012 and blanketed Richmond, California, sending 15,000 people to the hospital; or the fertilizer distribution center that exploded in West, Texas in 2013, killing 15 people; or the Elk River leak of 7,500 gallons of toxic chemicals earlier this year that contaminated the water supply of 300,000 West Virginians. Unfortunately, as the industrial infrastructure of private companies ages, the ratio of health and safety inspectors per worksite declines, and our population centers expand, the risks of chemical catastrophes are increasing.

¹ The storage tank on the Elk River that leaked was over 70 years old. A study of chlorine facilities produced 14 years ago noted that the majority *at that time* were over 20 years old and a third were over 55 years old. If those plants are in operation today, they would be over 70 years old. Worrell, Phylipsen, Einstein, and Martin, "Energy Use and Energy Intensity of the U.S. Chemical Industry," April 2000. Commissioned by EPA.

² See Nick Schwellenbach, *What's At Stake: Austerity Budgets Threaten Worker Health and Safety*, Center for Effective Government. Aug. 29, 2013. Available at http://www.foreffectivegov.org/whatsatstake-workersafety.

This report documents the number of schools and schoolchildren within the chemical vulnerability zones of 3,429 high-risk chemical facilities operating in the U.S. today. Almost 13,000 facilities must report to the Risk Management Program of the U.S. Environmental Protection Agency (EPA) because they produce, use, or store large quantities of certain toxic or hazardous chemicals. The facilities report their "vulnerability zones" – the areas around each facility that would be affected if a chemical release or explosion occurred. While this information must be reported to EPA, information on vulnerability zones is not available in a centralized place; data must be collected in person at regional EPA reading rooms that have limited hours.³ The facilities are also required to submit an emergency plan for the surrounding community should a disaster occur, which is to be shared with emergency personnel in those communities.⁴

Staff at the Center for Effective Government mapped the vulnerability zones of the 3,429 facilities that reported having at least 100,000 people in their vulnerability zones and/or were in one of seven industries.⁵ We then examined the schools and students that fell within these vulnerability zones.⁶ (See Appendix I for more details on our methodology.)

³ The vulnerability zone data was gathered through research we participated in in 2013 that resulted in a collaborative report entitled *Who's in Danger? Race, Poverty, and Chemical Disasters.* Available at http://comingcleaninc.org/whats-new/whos-in-danger-report.

⁴ There was some question about whether the first responders who died in West, Texas understood the risk of explosion from the materials being stored there.

⁵ Who's in Danger? Race, Poverty, and Chemical Disasters.

⁶ In April 2014, the Center for Effective Government released an analysis and interactive map that examined the proximity of nearly 100,000 *public* schools to *all* 12,728 facilities in the Risk Management Program. We found that nearly one in ten public school students attended school within one mile of a facility that had large enough quantities of hazardous chemicals that they reported to EPA's Risk Management Program. This new analysis uses the self-reported vulnerability zones of 3,429 facilities, many of which are much larger than one mile. We also included private schools in our analysis, so the students covered rose from 49.4 to 53.6 million.

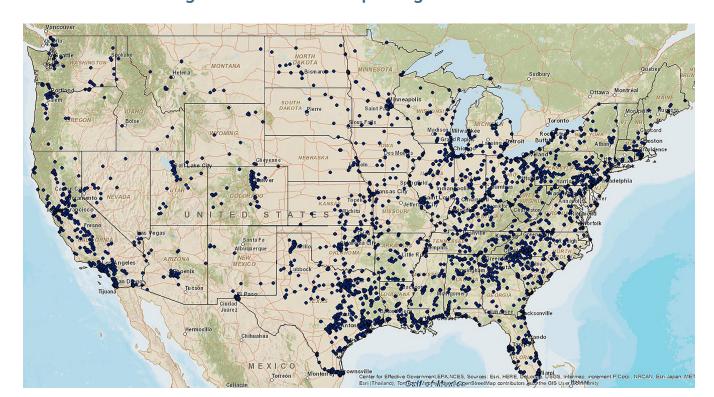


Figure 1. Nationwide Map of High-Risk Facilities

WHAT DID WE FIND?

At least one in every three schoolchildren in the U.S. attends a school within the vulnerability zone of a hazardous chemical facility (19.6 million of the 53.6 million children enrolled in pre-kindergarten through high school). This is 36 percent of all schoolchildren in the country. That's a shocking number.

Risk Broadly Dispersed and Concentrated in Some Areas

The risks from these facilities are widely dispersed across the country. In only two states – Vermont and Alaska – are no schools inside a known vulnerability zone for a facility. The states with the largest number of students in vulnerability zones are also the states with the largest number of residents overall. Half the children found in vulnerability zones are in the five most populous states – California, Texas, Florida, Illinois, and New York.

Table 1: Top Five States for Number of Schools and Students in Vulnerability Zones

State	Number of Schools in Vulnerability Zones	Number of Students in Vulnerability Zones	Percentage of Students in Vulnerability Zones
California	5,727	3,317,846	49%
Texas	5,658	3,206,006	61%
Florida	2,908	1,495,051	51%
Illinois	2,466	1,084,352	47%
New York	2,210	1,027,864	33%

But a larger proportion of children in several less populated states are at risk than in these larger states. Sixty percent or more of all the students in the states of Utah, Rhode Island, Texas, Louisiana, and Nevada attend schools within a vulnerability zone.

Table 2: Top Five States for Percentage of Students in Vulnerability Zones

State	Number of Schools in Vulnerability Zones	Number of Students in Vulnerability Zones	Percentage of Students in Vulnerability Zones
Utah	699	424,701	69%
Rhode Island	311	108,777	67%
Texas	5,658	3,206,006	61%
Louisiana	1,082	502,349	61%
Nevada	426	275,914	60%

Notably, Texas is the only state on both lists: it has the second-highest number of students in vulnerability zones, which represents over 60 percent of all students in the state. Texas has more petroleum refining facilities, chemical industry plants, wastewater treatment, and water treatment facilities than any other state.

And within states, the risks are concentrated in certain regions because the hazards from chemical facilities are local in nature. Our analysis identified 102 counties in 22 states where every student in the county attends a school inside at least one vulnerability zone.

Figure 2. Counties Where Every Student Goes to School in At Least One Vulnerability Zone

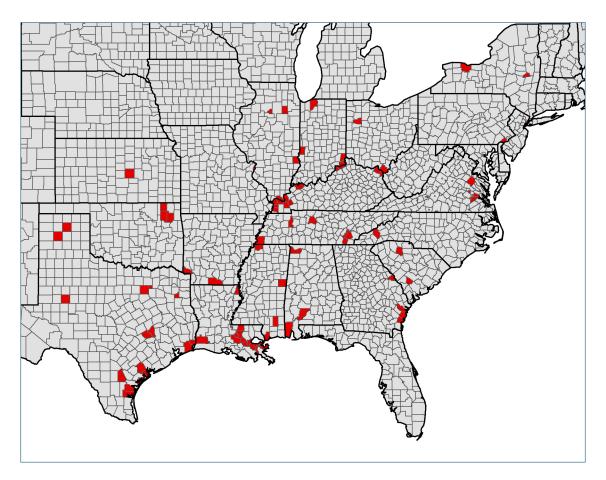


Table 3: States Containing Four or More Counties with 100% of Students in Vulnerability Zones

State	Counties with 100% of Students in Vulnerability Zones
Texas	Aransas, Brazos, Burleson, Calhoun, Dallas, Gregg, Howard, Hutchinson, Jefferson, Kleberg, Live Oak, Nueces, Orange, Potter, Rockwall, Victoria
Virginia	Buena Vista*, Caroline, Charles City, Colonial Heights*, Covington*, Franklin City*, Galax*, Harrisonburg*, Hopewell*, Norfolk*, Petersburg*, Portsmouth*, Prince George*, Richmond City*, Roanoke City*, Salem*
Kentucky	Ballard, Boyd, Carlisle, Carroll, Gallatin, Greenup, Henderson, Hickman, Livingston, Lyon, Marshall, McCracken, Trimble
Louisiana	Ascension, Calcasieu, East Baton Rouge, East Carroll, East Feliciana, Iberville, Jefferson, Orleans, St. Bernard, St. Charles, St. James, St. John the Baptist, West Baton Rouge
Tennessee	Benton, Bradley, Davidson, McMinn, Meigs, Shelby
Indiana	Dearborn, LaPorte, Ohio, Switzerland, Vigo
Georgia	Glynn, Liberty, McIntosh, Richmond
Illinois	Crawford, Grundy, Massac, Putnam
Mississippi	DeSoto, Hancock, Noxubee, Perry

^{*}Indicates an independent city that acts as a county.

Complete coverage of all schools within a county can be the result of a single facility with a large vulnerability zone that covers a large area or a cluster of dangerous facilities. Both of these factors are at play in Texas, where in 16 counties, all the students are in vulnerability zones. For instance, in Aransas County, two facilities in a neighboring county with 25-mile vulnerability zones encompass all of Aransas' seven schools. In Jefferson County, the sheer number of nearby facilities – 35 within the county itself – is a major factor that contributes to all schools being at risk.

Virginia also has 16 counties in which all the schools fall into vulnerability zones, but some of these are actually independent cities that act as counties and have smaller overall acreage than counties in other states. The state also has a significant number of chemical industry and water and wastewater treatment plants. Kentucky and Louisiana each have 13 counties where every student is at risk. Kentucky has a handful of facilities with large vulnerability zones. For example, virtually all of Henderson County falls within the 25-mile vulnerability zone of Brenntag Mid-South, Inc., a bleach manufacturing facility. The large number of parishes in Louisiana in which all the children are in vulnerability zones is the result of the chemical industry.

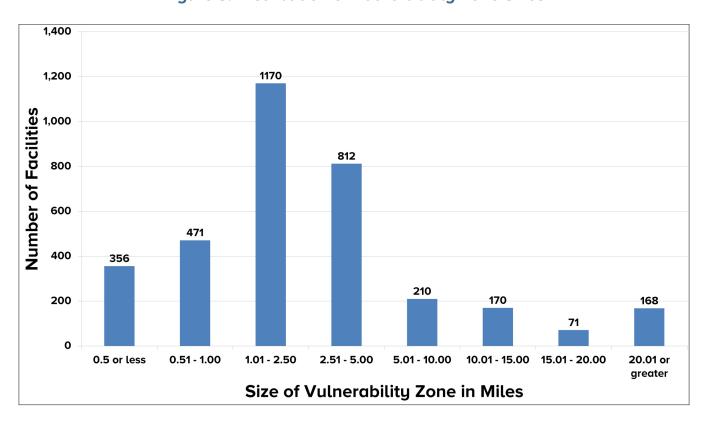


Figure 3. Distribution of Vulnerability Zone Sizes

Many but not all of these counties are part of metro areas within states. In some places, the risks explode with the concentration of population. Urban schoolchildren in Texas, Louisiana, and Tennessee are in multiple vulnerability zones.

Table 4. Number of Schools and Students in Multiple Vulnerability Zones

Number of Vulnerability Zones	Number of Schools in this Range	Number of Students in this Range
30-41	70	47,218
20-29	358	215,243
10-19	602	301,754
2-9	19,302	9,814,835

The greater Houston area is the worst example: more than 270 of its schools are in multiple vulnerability zones. San Jacinto Elementary in Deer Park, Texas, sits in 41 different vulnerability zones. In Baton Rouge, Louisiana, some schools are in 22 different vulnerability zones. The facility with the largest vulnerability zone in our data is located in Baton Rouge – Honeywell International Inc. Baton Rouge Plant has a vulnerability zone with a 40-mile wide radius encompassing 283 schools. The Beaumont-Port Arthur, Texas metropolitan area contains schools that sit in 15 different overlapping vulnerability zones. Many schools sit right beside facilities with wide vulnerability zones.

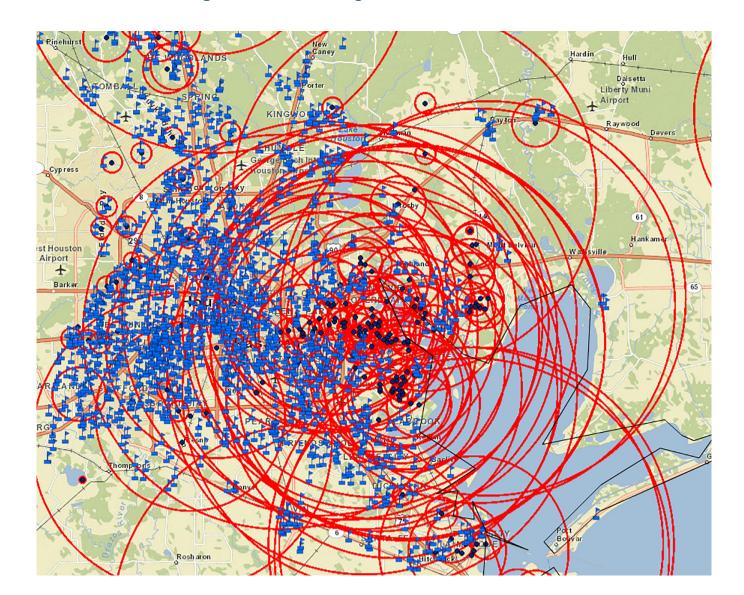


Figure 4. Vulnerability Zones in Houston, Texas

The 880 schools situated in the most vulnerability zones are all located in Texas and Louisiana. But Memphis, Tennessee and Wilmington, Delaware also have schools situated in as many as 10 different vulnerability zones.

The Riskiest Facilities

The level of risk associated with a particular chemical facility has to do with the quantity of chemicals being handled, how dangerous those chemicals are, and the proximity of the facility to population centers. Several of the facilities in our data have hundreds of thousands of students in their vulnerability zones because they are large, handle very toxic chemicals, and are near large population centers.

Table 5: Facilities Putting over 500,000 Students at Risk

Facility Name	City and State	Number of Students in Facility's Vulnerability Zone	Number of Schools in Facility's Vulnerability Zone	Chemical in Facility's RMP
Kuehne Chemical Co., Inc.	South Kearny, NJ	861,639	1,887	Chlorine
Central Regional Wastewater System	Grand Prairie, TX	766,761	1,265	Sulfur dioxide (anhydrous)
Solvay USA Inc., Houston Plant	Houston, TX	714,446	1,167	Oleum (fuming sulfuric acid)
KIK SoCal Inc.	Santa Fe Springs, CA	679,002	1,118	Chlorine
JCI Jones Chemicals Inc Torrance	Torrance, CA	625,832	1,071	Sulfur dioxide (anhydrous)
PVS Chemical Solutions, Inc.	Chicago, IL	611,745	1,347	Sulfur dioxide (anhydrous)
Agrifos Fertilizer L.L.C.	Pasadena, TX	605,554	1,004	Ammonia (anhydrous)
Thorofare Plant	West Deptford, NJ	546,854	1,283	Hydrofluoric acid (conc >50%)
Houston Ammonia Terminal, L.P.	Pasadena, TX	539,602	903	Ammonia (anhydrous)
GATX - Colton, CA Tank Car Facility	Colton, CA	511,089	722	Bromine

See Appendix IV for a longer list of top facilities.

Table 5 lists the ten facilities with the most students inside their vulnerability zones. Seven of the ten facilities on the list are in California and Texas, but New Jersey houses the facility that places the most students and schools at risk because it is in the New York City metro area.

The Kuehne Chemical Company⁷ in South Kearny, New Jersey has a 14-mile vulnerability zone with 1,887 schools and 861,639 students situated within it. The facility's vulnerability zone encompasses nearly all of Manhattan, as well as all of Jersey City and Newark. The company holds up to 2 million pounds of chlorine gas for use in manufacturing bleach. Chlorine gas is heavier than air, and if leaked spreads close to the ground and can be carried by wind. Contact with chlorine gas produces the same effects as when it was used as a chemical weapon in World War I: burning of skin and eyes, respiratory damage, and even death.

⁷ To research a facility's enforcement record with EPA or OSHA to see if they have been cited for health and safety violations, visit http://echo.epa.gov/ and http://ogesdw.dol.gov/. You can also use the Corporate Research Project to find information on the corporate owners of particular facilities, available online at http://www.corp-research.org/.

Central Regional Wastewater System in Grand Prairie, Texas (a city between Dallas and Fort Worth) puts the second-largest number of students at risk, with a vulnerability zone stretching 25 miles. It stores 360,000 pounds of sulfur dioxide for use in wastewater treatment, along with other chemicals such as chlorine gas. Sulfur dioxide is colorless and can travel far when leaked. Immediate exposure irritates skin and eyes, damages lungs, and can prove fatal. The fifth and sixth facilities on the list are both chemical manufacturers that also list sulfur dioxide as their most dangerous chemical. JCI Jones Chemicals Inc. in Torrance, California stores up to 180,000 pounds of sulfur dioxide at any given time and has a vulnerability zone of 16 miles. PVS Chemical Solutions, Inc. in Chicago, Illinois stores 1.5 million pounds of sulfur dioxide and has a 25-mile vulnerability zone.

The facility putting the third-most students at risk is Solvay USA Inc.'s Houston plant, a chemical manufacturing facility. It stores over 41 million pounds of toxic chemicals and has a vulnerability zone stretching 25 miles. Solva's most risky chemical is oleum, which is created by dissolving sulfur trioxide gas in sulfuric acid. If exposed to air, it can create a sulfuric acid cloud. Oleum is highly reactive and can form flammable or explosive hydrogen gas when exposed to certain metals. The chemical burns skin, eyes, and lungs on contact.

The seventh and ninth facilities on the list, both in Pasadena, Texas, list anhydrous ammonia as their most dangerous chemical. Agrifos Fertilizer L.L.C. uses ammonia to produce fertilizer, with up to 13.5 million pounds of it onsite at a time. Houston Ammonia Terminal, L.P. is a chemical storage facility that holds up to 60 million pounds of anhydrous ammonia. Both have vulnerability zones of 25 miles. Anhydrous ammonia is a gas that is harmful even in small amounts. Low exposures can burn eyes and lungs, and higher exposures can cause blindness and death.

Eighth on the list is Thorofare Plant in West Deptford, New Jersey, which also has a 25-mile vulnerability zone. Thorofare manufactures chemicals and has 1.4 million pounds of hydrofluoric acid in compressed gas form. Hydrofluoric acid is used to make a variety of products, including refrigerants, plastics, and pharmaceuticals. Exposure to the gas burns eyes and lungs and can be fatal by causing fluid buildup in the lungs.

Tenth on the list is GATX Tank Car Facility in Colton, California, which cleans railcars that transport chemicals. Its most hazardous onsite chemical is bromine, which is used to help vent railcars with toxic or flammable chemicals. Bromine is a fuming liquid that can damage lungs, skin, and eyes and cause serious long-term effects. It is not flammable but can cause combustible materials to burn faster. GATX stores 210,000 pounds of bromine and has a vulnerability zone of 25 miles.

The Chemicals that Create Risk, Less Dangerous Alternatives

Our research focused on facilities in seven major industry sectors. Combined, the industry sectors below are estimated to put more than 134 million people at risk.⁸ (See Appendix V for an industry breakdown of populations at risk.) While facilities in these industries use a variety of chemicals, there were some strong trends in the main chemicals listed as responsible for the vulnerability zones. Table 6 examines those industry sectors and names the chemical most often listed as the cause of the vulnerability zone for each.⁹

Table 6: Chemicals Most Often Listed in Risk Management Plans, by Industry¹⁰

Industry	Chemical	Percentage of Facilities Listing this Chemical
Bleach Manufacturing	Chlorine	77%
Water Treatment	Chlorine	86%
Wastewater Treatment	Chlorine	99%
Chemical Manufacturing	Chlorine	13%
Pulp and Paper Manufacturing	Chlorine dioxide	76%
Petroleum Refining	Hydrofluoric acid (conc >50%)	38%
Electrical Power Generation	Ammonia (anhydrous)	60%

Chlorine was the most common chemical listed as the cause of these vulnerability zones. In three of the industry sectors, chlorine was the main cause by far, being used or stored at 77 to 99 percent of the facilities. Chlorine is prevalent in wastewater and water treatment facilities, where it is used as a disinfectant, and is heavily used in bleach manufacturing.

Fortunately, several cost-effective alternatives to chlorine gas exist for wastewater and water treatment. Sodium hypochlorite is like a stronger version of bleach used to clean homes. As a liquid, it does not have the same release risks as chlorine gas but still maintains its disinfecting properties. Another alternative is ultraviolet light, which kills bacteria without the use of chemicals. A recent study found that 554 water and wastewater treatment plants have already switched to various safer alternatives and estimated that those changes eliminated chemical risks for more than 40 million people. But thousands of other facilities continue to use chlorine gas.

⁸ Who's in Danger? Race, Poverty, and Chemical Disasters.

⁹ To calculate the number of students and schools each chemical puts at risk would require a separate GIS analysis for each chemical. 10 There are 128 facilities in our analysis that do not fit into any of these industry sectors.

¹¹ Reece Rushing and Paul Orum, "Leading Water Utilities Secure Their Hazards," Center for American Progress, March 2010. Available at http://www.americanprogress.org/issues/security/news/2010/03/02/7538/leading-water-utilities-secure-their-chemicals/.

Bleach manufacturing companies can also replace chlorine gas with sodium hypochlorite. In 2009, the Clorox Company began switching from chlorine gas to sodium hypochlorite in all of its facilities. This decision removed the risk to over 13 million Americans¹² and demonstrated that switching to safer chemical processes is feasible and can be profitable. Other bleach manufacturers have begun producing chlorine bleach as needed from salt and electricity, eliminating the need for storage of large quantities of the dangerous chemical.

In fact, industry alternatives exist for all the major chemicals listed above.

- Pulp and paper manufacturers generally use chlorine dioxide as a bleaching agent. When the
 chemical is exposed to sunlight, it breaks down into oxygen and chlorine gas. Chlorine-free
 chemicals, such as hydrogen peroxide and ozone, can be used as bleaching agents with fewer
 risks.
- Electrical power generators use anhydrous ammonia in pollution reduction systems. Safer
 alternatives include an aqueous solution (anhydrous ammonia dissolved in water) or solid urea,
 which is mixed onsite. Power plants that use anhydrous ammonia average vulnerability zones
 close to 3.5 miles, while those using aqueous solutions average vulnerability zones under half a
 mile.¹³
- Petroleum refineries that use hydrofluoric acid as a catalyst can switch to processes that use sulfuric acid, which isn't even covered by RMP because of its low airborne release risk. Refineries can also use solid acid and liquid ionic catalysts, which significantly reduce risks to surrounding communities.

 $^{12 \}quad Greenpeace. \ Available \ at \ \underline{http://www.greenpeace.org/usa/en/media-center/news-releases/clorox-to-eliminate-chlorine-d/.}$

¹³ Who's in Danger: Race, Poverty, and Chemical Disasters.

HOW WE CAN MAKE OUR CHILDREN SAFER

We have had strong rules to ensure air and water quality for a generation, but we have failed to establish similar protections to reduce the risk of chemical accidents. Facilities that generate toxins in their production processes have legal limits on the amounts they can emit and are required to install the best available anti-pollution technologies in order to reduce potential exposure and harm to the public. The risk chemical facilities pose is just as real a danger and should be similarly regulated.

Fortunately, companies, legislatures, and agencies can take steps to reduce the size of vulnerability zones and ensure that children and schools are beyond their boundaries.

The most effective way to protect our children from chemical disasters is to require companies to use safer alternatives whenever possible. We have a rare opportunity at the federal level to establish new rules requiring companies to shift to the safer chemical alternatives that are available. In the wake of the West, Texas disaster, the president issued an executive order for EPA, the Occupational Safety and Health Administration (OSHA), and the Department of Homeland Security (DHS) to review, upgrade, and coordinate their policies covering chemical facilities.

Over half of the facilities putting students at risk are wastewater or water treatment facilities, with most using chlorine gas as a disinfectant. Clean water is vital to human health and can be achieved by using safer alternatives like liquid chlorine, ozone, or UV radiation. Indeed, water treatment facilities across the country have been voluntarily choosing to reduce potential harm by shifting to safer chemicals and technologies. A recent study found that 554 water and wastewater treatment plants have switched to various safer alternatives and estimated that those changes eliminated chemical risks for more than 40 million people.¹⁴

Yet thousands of facilities continue to employ highly dangerous chemicals. Instead of this piecemeal approach to safety and the current federal approach focused on risk management, we need to move to a mandatory prevention-based approach. Facilities and companies should be required to show that they understand the risks their current chemical production and storage poses to nearby schools and students. They should demonstrate that they know of and have plans to shift to less hazardous chemicals and industrial production processes where feasible. If they won't switch, they should explain why and lay out another plan for mitigating risks to the community.

¹⁴ Reece Rushing and Paul Orum, "Leading Water Utilities Secure Their Hazards," Center for American Progress, March 2010. http://www.americanprogress.org/issues/security/news/2010/03/02/7538/leading-water-utilities-secure-their-chemicals/.

Though EPA is driving potential policy changes in the Risk Management Program, other agencies, including OSHA and DHS, need to incorporate any safer alternatives requirements into their programs and rules, as well.

Facilities can and should shrink their vulnerability zones by limiting the amount of hazardous chemicals they store or produce onsite – especially when they operate near schools or urban areas.

Even when dangerous chemicals cannot be replaced, facilities can significantly reduce their vulnerability zones by reducing the quantities of chemicals stored onsite. Bringing chemicals to these facilities in real-time, with the expectation that they will use them shortly after delivery, reduces the need to store large amounts of hazardous chemicals onsite for significant periods of time. This incredibly simple but effective step can greatly limit risks to nearby communities.¹⁵

Similarly, facilities sometimes have the option to store a chemical in a way that reduces its toxicity or volatility. For instance, some chemicals can be mixed with other chemicals or materials to make them more stable and less dangerous. Then the facility can use a process onsite to extract the hazardous material only when it is needed. This means there are never large amounts of the toxic chemical on hand, again dramatically shrinking vulnerability zones and protecting neighboring schools, students, and communities.

Finally, new high-risk facilities should not be built near large urban areas or probable growth areas around cities. Some of the most hazardous facilities have been in place for years as communities around them have grown. But there is no excuse for new high-risk facilities to be located so dangerously close to major population centers. If companies cannot commit to using the safest chemicals and technologies, then their facilities need to be located as far from population centers as possible. New facilities should also come with buffer zones that prevent residential development or school construction near the facility.

Changing the way hazardous facilities are sited may require changes to zoning laws. In most states, changes to zoning laws are made on the local level through city or town councils, planning boards, zoning boards, or other official bodies. Local officials should take into account the high level of risk these facilities pose to children, schools, and local areas when making zoning decisions. They should require chemical facilities to directly communicate risks to county executives, mayors, local emergency response agencies, hospitals, school administrators, and local residents, including the disclosure of all hazardous chemicals onsite at the facilities and emergency response plans.

^{15 &}quot;Cleaning Up With Rent-a-Chemical: Lease programs are emerging as a safer, more environmentally friendly way to manage chemicals," Elizabeth Grossman, Ensia, Sept. 15, 2014. http://ensia.com/features/cleaning-up-with-rent-a-chemical/.

How you can act now to help protect all American schoolchildren from chemical disasters

The Obama administration is in the midst of exploring new rules to govern the handling and safety of hazardous chemicals. EPA has the authority to make safer chemicals a requirement for facilities reporting to its Risk Management Program. As EPA considers revisions to the program, concerned parents, teachers, school administrators, organizations, and others have the opportunity to tell the agency that requiring safer chemicals is the best way to safeguard our schools and communities. EPA is accepting comments until Oct. 29. Write to EPA and ask the agency to protect our children by requiring facilities to switch to safer chemicals.

How you can reduce the vulnerability of schoolchildren in your community

National policy changes could mean a tremendous reduction of risk for thousands of schools across the country. But even if policymakers have the courage to act, it will take some time before any new requirements are in place that result in changes at local facilities. While parents, teachers, local officials, and others should weigh in on the national policy debate, they need not wait for those results. Action can be taken at the local level, and you can take part through the following:

Learn about risks in your community and share this information with other community members, as well as local and state leaders.

- Share this report and the <u>interactive map</u> with your friends, relatives, and neighbors so they can see the risks to their own schools and communities.
- Talk to your PTA or PTO encourage teachers to use our <u>curriculum</u> to explore the issue of chemical risk and ways everyday citizens can make their communities safer.
- Write a <u>letter to the editor</u> of your local paper.

Advocate for policy changes on the local, state, and federal levels.

- Ask your city council representative to pass a resolution supporting the shift to safer chemical alternatives.
- Ask your state representatives to require the use of safer chemicals at facilities located near you.
- <u>Contact your state's environmental agency</u> and ask staff to hold a hearing and/or to send a comment to the federal EPA about reducing risks in your community.
- Tell Congress to <u>support new requirements</u> to shift to safer chemical alternatives.
- Register to vote and encourage candidates to support improved safety and better protections for children.

Put pressure on local facilities to voluntarily switch to safer chemical alternatives.

• The <u>interactive risk map</u> allows you to find the name of the facility at the center of each vulnerability zone, its address, and the amount of chemicals it stores. This should give you enough information to contact the facility and arrange a meeting. You can also use the information to launch a local letter-writing campaign and/or encourage a local reporter to investigate this issue. You can look up each facility's enforcement record with <u>EPA</u> or <u>OSHA</u> to see if they have been cited for health and safety violations. Additionally, the <u>Corporate Research Project</u> may provide useful information on the corporate owners of particular facilities.

Share this information with local school officials and insist they have an emergency plan in place.

• Each facility in this report is required to have a Risk Management Plan on record with the first responders and emergency management officials in your community. Ask your local first responders to come to the schools in your area and conduct a drill or to talk to your PTA/PTO and explain emergency procedures so everyone knows the plan in the event of a disaster. Eastern Kentucky University has produced a guide for developing an emergency action plan for schools that includes a wide variety of emergencies, including hazardous material releases.

Public pressure can push companies and policymakers to make better choices. Tell them that the safety of the children in your community requires their action.

APPENDIX I: METHODOLOGY

The data on chemical facilities in this analysis comes from the U.S. Environmental Protection Agency's (EPA) Risk Management Program. The program requires facilities that produce, handle, process, distribute, or store large amounts of certain toxic or flammable chemicals to submit a risk management plan (RMP) that includes a vulnerability zone analysis.

The vulnerability zone is a circular area around the facility that indicates the area that could be affected by a chemical release or explosion of the facility's largest single container (and interconnected piping) of certain extremely hazardous substances. The size of the zone depends on the quantity and characteristics of the chemical. EPA defines the general methods that facilities must use in determining vulnerability zone size or distance (radius), and then companies use modeling programs to determine and report their facilities' vulnerability zones.

All people living or working within vulnerability zones are at risk of serious harm, but actual impacts of a release would vary due to weather, wind direction, distance from the facility, and other factors.

Most of the RMP data was obtained through a Freedom of Information Act request to EPA and is current as of Dec. 27, 2013. However, the vulnerability zone information is limited and available only through designated federal reading rooms. The RMP data on the 3,429 facilities was gathered in standardized notes made through multiple visits to federal reading rooms within the last five years.

Given the restricted access, research on vulnerability zones was prioritized to address the facilities that placed the most people at risk and for key industry sectors. The vulnerability information was collected for the following types of facilities:

- 1. Facilities that self-reported in their RMP having 100,000 or more people living within their vulnerability zones, regardless of industry sector.
- 2. Facilities that belong to the following seven industry sectors: potable water treatment, wastewater treatment, commercial bleach manufacturing, electric power production, petroleum refining, pulp and paper production, and chemical manufacturing.¹⁶

¹⁶ The chemical category includes facilities belonging to either the American Chemistry Council (ACC) or the Society of Chemical Manufacturers and Affiliates (SOCMA).

The facilities' self-reported latitude-longitude data was used to establish facility locations and map them using Geographic Information System (GIS) software (ESRI ArcGIS Desktop Advanced 10.2). We corrected location data only for nine facilities that had obviously inaccurate geographic coordinates that placed the facilities in the ocean. Otherwise, the latitude-longitude location data as reported by the facilities was relied upon and was not changed.

The school data in this analysis is from the U.S. Department of Education, Institute of Education Sciences, National Center for Education Statistics (NCES). The private school data is specifically from the Private School Universe Survey (PSS) for the 2011-12 school year. The public school data is from the Common Core of Data (CCD) for the same time period.

The CCD is an official list of public elementary and secondary schools in the United States. The data is collected annually and is considered to be a comprehensive statistical database of these schools. The PSS is also an annual survey of schools, but the schools are private (i.e. public funding is not their primary means of support) and must meet certain criteria to be considered. Home school organizations that don't offer classroom teaching are not included.

Schools from each data set were included only if they were operational for the 2011-12 school year as determined by the NCES. Each of the data sets contains information including numbers of students attending the school and the latitude and longitude of the school. The latitude and longitude data was used to map school locations using Geographic Information System (GIS) software (ESRI ArcGIS Desktop Advanced 10.2). We spot-checked all schools cited in this report and our state fact sheets and moved a few that were incorrectly located. No other school locations were corrected or changed from the latitude and longitude data provided. We also kept all schools on the map, even if they have closed since the 2011-12 survey was conducted.

Previous Analysis

In an April 2014 analysis, we found that nearly 10,000 public schools are located within one mile of the almost 13,000 chemical facilities that report to EPA's Risk Management Program. Based on the data we used in that analysis, 4.6 million students, or one in ten, were found to be at risk.

This new analysis is more extensive. Most importantly, we were able to use the self-reported vulnerability zones for 3,429 RMP facilities. These zones are a more accurate measure of the risk being generated by

each facility than the simple, universal one-mile buffer we originally used. Also, many of the vulnerability zones are significantly larger than our original one-mile buffer. This restricts the new analysis to a fraction of the RMP facilities, but the research specifically focused on finding the zones that put the most people at risk and those for industry sectors with some of the widest spread across states.

Additionally, we were able to expand the universe of schools impacted. Our original analysis only included 98,524 public schools with 49.4 million students in kindergarten through 12th grade that we were sure were open and had students. For this new analysis, we included private schools and were able to better identify open public schools, for a total of 122,968 schools with 53.6 million students.

NOTE: The information on chemical risk is only available because federal law requires local facilities to develop emergency response plans, and open government rules require that these plans be made public. The Center for Effective Government has fought to protect and extend transparency rules for the last 25 years. Though this information is technically publicly available, one has to physically visit a regional EPA reading room to access it. EPA should make vital information like this more accessible to everyone.

APPENDIX II: TABLE A – NUMBER OF STUDENTS IN VULNERABILITY ZONES, BY STATE

Rank	State	Totel Number of Schools in Vulnerability Zones	Total Number of Students in Vulnerability Zones
1	California	5,727	3,317,846
2	Texas	5,658	3,206,006
3	Florida	2,908	1,495,051
4	Illinois	2,466	1,084,352
5	New York	2,210	1,027,864
6	Pennsylvania	1,741	744,199
7	New Jersey	1,492	648,641
8	Ohio	1,364	608,038
9	Tennessee	1,020	510,215
10	Louisiana	1,082	502,349
11	Indiana	889	440,675
12	Utah	699	424,701
13	Michigan	940	382,506
14	Minnesota	890	337,171
15	Arizona	609	336,469
16	Virginia	627	321,394
17	Georgia	545	306,555
18	Kentucky	659	294,892
19	Nevada	426	275,914
20	North Carolina	524	273,072
21	Missouri	681	269,449
22	South Carolina	507	256,144
23	Oklahoma	529	244,346
24	Washington	542	240,194
25	Alabama	467	214,791
26	Kansas	475	202,439
27	Maryland	432	178,200
28	Mississippi	305	155,439
29	lowa	258	114,198
30	Nebraska	251	111,657

	1	·	
31	Oregon	279	110,724
32	Rhode Island	311	108,777
33	Wisconsin	313	107,169
34	Arkansas	246	106,360
35	New Mexico	248	106,302
36	West Virginia	260	97,366
37	Massachusetts	208	91,138
38	Delaware	196	87,471
39	Connecticut	202	77,611
40	New Hampshire	178	67,353
41	Colorado	106	51,117
42	Montana	88	33,254
43	North Dakota	67	27,211
44	Wyoming	53	17,564
45	Maine	72	13,477
46	Hawaii	17	11,370
47	ldaho	24	6,354
48	South Dakota	4	337

Note: Alaska and Vermont do not appear as neither have schools located in the vulnerability zones included in this study.

APPENDIX III: TABLE B – PERCENTAGE OF STUDENTS IN VULNERABILITY ZONES, BY STATE

Rank	State	Percentage of Students in Vulnerability Zones	Number of Students in Vulnerability Zones	Total Number of Students in State
1	Utah	69%	424,701	614,495
2	Rhode Island	67%	108,777	162,402
3	Texas	61%	3,206,006	5,216,401
4	Louisiana	61%	502,349	818,310
5	Nevada	60%	275,914	458,147
6	Delaware	58%	87,471	150,634
7	Florida	51%	1,495,051	2,938,440
8	California	49%	3,317,846	6,714,357
9	Tennessee	48%	510,215	1,068,085
10	Illinois	47%	1,084,352	2,297,389
11	New Jersey	43%	648,641	1,517,873
12	Kentucky	40%	294,892	738,455
13	Kansas	39%	202,439	518,933
14	Indiana	39%	440,675	1,132,036
15	Pennsylvania	37%	744,199	1,992,009
16	Minnesota	37%	337,171	915,420
17	Oklahoma	35%	244,346	691,688
18	Nebraska	33%	111,657	334,625
19	South Carolina	33%	256,144	770,749
20	New York	33%	1,027,864	3,093,860
21	West Virginia	33%	97,366	294,304
22	New Hampshire	32%	67,353	210,613
23	Ohio	31%	608,038	1,931,220
24	Arizona	30%	336,469	1,121,001
25	New Mexico	30%	106,302	354,390
26	Mississippi	29%	155,439	531,578
27	Alabama	27%	214,791	793,595
28	Missouri	27%	269,449	1,014,842
29	North Dakota	26%	27,211	103,394
30	Virginia	24%	321,394	1,350,514
31	Michigan	23%	382,506	1,654,001

32	Montana	22%	33,254	149,813
33	lowa	22%	114,198	522,595
34	Washington	21%	240,194	1,118,793
35	Arkansas	21%	106,360	504,956
36	Wyoming	19%	17,564	91,644
37	Oregon	19%	110,724	594,672
38	Maryland	18%	178,200	974,386
39	North Carolina	17%	273,072	1,589,707
40	Georgia	17%	306,555	1,801,894
41	Connecticut	13%	77,611	614,648
42	Wisconsin	11%	107,169	981,931
43	Massachusetts	9%	91,138	1,063,641
44	Maine	7 %	13,477	195,113
45	Colorado	6%	51,117	897,742
46	Hawaii	5%	11,370	214,371
47	ldaho	2%	6,354	289,661
48	South Dakota	0.2%	337	136,896

Note: Alaska and Vermont do not appear as neither have schools located in the vulnerability zones included in this study.

APPENDIX IV: TABLE C – FACILITIES THAT PUT 200,000 OR MORE STUDENTS AT RISK

Rank	Facility Name	City, State	Number of Students in Facility's Vulnerability Zone	Number of Schools in Facility's Vulnerability Zone	Chemical in Facility's RPM
1	Kuehne Chemical Co., Inc.	South Kearny, NJ	861,639	1,887	Chlorine
2	Central Regional Wastewater System	Grand Prairie, TX	766,761	1,265	Sulfur dioxide (anhydrous)
3	Solvay USA Inc., Houston Plant	Houston, TX	714,446	1,167	Oleum (fuming sulfuric acid)
4	KIK SoCal Inc.	Santa Fe Springs, CA	679,002	1,118	Chlorine
5	JCI Jones Chemicals Inc Torrance	Torrance, CA	625,832	1,071	Sulfur dioxide (anhydrous)
6	PVS Chemical Solutions, Inc.	Chicago, IL	611,745	1,347	Sulfur dioxide (anhydrous)
7	Agrifos Fertilizer L.L.C.	Pasadena, TX	605,554	1,004	Ammonia (anhydrous)
8	Thorofare Plant	West Deptford, NJ	546,854	1,283	Hydrofluoric acid (conc >50%)
9	Houston Ammonia Terminal, L.P.	Pasadena, TX	539,602	903	Ammonia (anhydrous)
10	GATX - Colton, CA Tank Car Facility	Colton, CA	511,089	722	Bromine
11	Village Creek Wastewater Treatment Plant	Arlington, TX	496,858	826	Sulfur dioxide (anhydrous)
12	AMVAC Chemical Corporation	Los Angeles, CA	490,614	850	Chlorine
13	Occidental Chemical Corp Deer Park VCM Plant	Deer Park, TX	478,283	799	Hydrogen chloride (anhydrous)
14	NTMWD Wylie Water Treatment Plant	Wylie, TX	452,542	728	Chlorine
15	Chemical Unloading Facility	Perris, CA	449,158	629	Chlorine
16	Baker Petrolite Corporation - Bayport	Pasadena, TX	444,064	746	Formaldehyde (solution)
17	Eastside Water Treatment Plant	Sunnyvale, TX	436,049	761	Chlorine
18	Occidental Chemical Corp BG Chlor-Alkali- VCM	La Porte, TX	435,017	721	Chlorine

19	Delta Deer Park	Deer Park, TX	384,887	633	Toluene 2,6-diisocyanate
20	Kaneka Texas Corporation	Pasadena, TX	382,367	658	Chlorine
21	Clean Harbors Deer Park, LP	La Porte, TX	373,829	606	Chloromethyl methyl ether
22	Champion Technologies' Fresno Facility	Fresno, TX	366,033	612	Formaldehyde (solution)
23	Infineum USA L.P. Bayway Chemical Plant	Linden, NJ	361,551	765	Chlorine
24	Paulsboro Refining Company LLC	Paulsboro, NJ	360,230	869	Hydrofluoric acid (conc >50%)
25	KIK (Houston) Inc.	Houston, TX	350,651	642	Chlorine
26	INVISTA Intermediates LaPorte Plant	LaPorte, TX	350,610	583	Formaldehyde (solution)
27	La Porte Plant	La Porte, TX	349,660	580	Hydrofluoric acid (conc >50%)
28	PDV Midwest Refining, LLC	Lemont, IL	348,402	702	Hydrofluoric acid (conc >50%)
29	Allied Universal Corporation	Miami, FL	332,125	631	Chlorine
30	Sentry Industries, Inc.	Miami, FL	324,734	646	Chlorine
31	Pioneer Americas LLCd/b/a Olin Chlor Alkali Product	Santa Fe Springs, CA	320,838	504	Chlorine
32	DPC Enterprises, L.P.	Glendale, AZ	313,536	554	Chlorine
33	Hill Brothers Chemical Co Phoenix Facility 2006	Phoenix, AZ	305,423	546	Chlorine
34	Clear Lake Plant	Pasadena, TX	294,699	459	Ethylene oxide
35	Petra Chemical Company	Dallas, TX	290,165	531	Chlorine
36	Arkema Inc Houston Plant	Houston, TX	287,332	478	Hydrogen sulfide
37	KIK Pool Additives, Inc.	Ontario, CA	282,413	392	Chlorine
38	Central Wastewater Treatment Plant	Dallas, TX	271,542	490	Chlorine
39	Saint Paul Park Refining Company LLC	St. Paul Park, MN	270,386	702	Hydrofluoric acid (conc >50%)
40	Alexander Orr Water Treatment Plant	Miami, FL	260,132	512	Chlorine
41	DXI Industries, Inc.	Houston, TX	257,751	424	Sulfur dioxide (anhydrous)
42	Argo Terminal	Argo, IL	257,737	527	Vinyl acetate monomer
43	Tarrant County Water Supply Project	Euless, TX	248,104	381	Chlorine

44	East Water Purification Plant	Houston, TX	247,896	429	Chlorine
45	Equistar Chemicals L.P Bayport Underwood	Pasadena, TX	247,178	368	Ethylene oxide
46	Southside WWTP	Dallas, TX	241,938	424	Sulfur dioxide (anhydrous)
47	Elm Fork Water Treatment Plant	Carrollton, TX	240,774	405	Chlorine
48	Trainer Refinery	Trainer, PA	234,270	552	Hydrofluoric acid (conc >50%)
49	Houston Plant	Pasadena, TX	226,847	376	Chlorine
50	Brenntag Southwest - Greens Bayou	Houston, TX	224,067	375	Chlorine
51	Fiveash Water Treatment Plant	Fort Lauderdale, FL	223,552	390	Chlorine
52	John E. Preston Water Treatment Plant	Hialeah, FL	222,708	459	Chlorine
53	General Chemical Bay Point Works	Pittsburg, CA	221,863	445	Hydrofluoric acid (conc >50%)
54	GB Biosciences Corporation/Greens Bayou Plant	Houston, TX	217,635	363	Chlorine
56	Pennakem, LLC	Memphis, TN	213,124	393	Furan
57	Velsicol Chemical LLC (Memphis)	Memphis, TN	212,699	394	Chlorine
58	Pioneer Americas LLC dba Olin Chlor Alkali Product	Henderson, NV	209,975	288	Chlorine
59	Helm Fertilizer Terminal, Inc.	Memphis, TN	202,246	385	Ammonia (anhydrous)

APPENDIX V: NUMBER OF RMP FACILITIES AND VULNERABILITY ZONE POPULATIONS IN THIS REPORT BY INDUSTRY SECTOR*

Industry Sector	RMP Facilities**	Vulnerability Zone Population***	
Water treatment	1,284	33,692,612	
Wastewater treatment	686	21,004,374	
Bleach manufacturing	91	63,952,735	
Electric power generation	334	4,052,030	
Petroleum refining	130	18,484,212	
Pulp and paper production	72	5,462,950	
Chemical manufacturing****	778	79,726,744	
Total for all sectors	3,433****	134,932,009	

Note: Because of overlapping vulnerability zones, figures in the final column are not cumulative.

^{*} This table is reproduced from "Who's in Danger: Race, Poverty, and Chemical Disasters" May 2014, Environmental Justice and Health Alliance for Chemical Policy Reform. http://comingcleaninc.org/assets/media/images/Reports/Who%27s%20in%20Danger%20Report%20FINAL.pdf.

^{**} Facilities may be in more than one industry sector and thus do not equal the total for all sectors.

^{***} Values represent merged overlapping vulnerability zones to eliminate double counting within each industry sector. Because facilities may be in more than one sector, the sum of population values does not equal the population total for all sectors.

^{****} Defined as member companies of the American Chemistry Council (ACC) or the Society of Chemical Manufacturers and Affiliates (SOCMA).

^{*****} The number of facilities does not exactly match the number examined for this report, as several facilities had deregistered since the May report.

2040 S STREET NW, 2ND FLOOR WASHINGTON, DC 20009

web www.foreffectivegov.org

phone 202-234-8494

fax 202-234-8584

email info@foreffectivegov.org

l @foreffectivegov

facebook.com/foreffectivegov