
1 
 

HOW DATA SHOULD BE MADE PUBLICLY AVAILABLE 
RESOURCES COLLECTED BY THE SUNLIGHT FOUNDATION 

 
 
 

WHY EVERYONE SHOULD KNOW WHAT MAKES A GOOD DATA SET; 
IT’S NOT AS HARD AS YOU THINK 

 
In many offices, when technology questions arise, the answer is to reflexively trust the technologists. These are 
often the folks who link to Venn diagrams of the fine distinctions between nerds, geeks, and dweebs; who prefer 
the comic xkcd to the Far Side; and who trust slashdot over NPR. So when it comes to the question of how the 
government should make information available online — in particular, how data should be made available 
online — most people’s first inclination is to nod to the technologist and slowly back away. That disengagement 
is a mistake. 
 
How information is made available online fundamentally controls what can be done with it. Fortunately, an 
intelligent layperson can understand how structure makes data usable. That’s important, as the intelligent 
layperson is likely the one writing the rules on how government data will be made available: whether as a 
congressional staffer, a federal agency employee, or a citizen making a request. Awareness about data structure 
encourages smarter specs, and the ability to get more out of your information. 
 
The following are a series of articles drawn from the Sunlight Foundation, Sunlight Labs, and Princeton’s 
Freedom to Tinker Blog that discuss how data should be made publicly available to assure a high level of data 
quality. 
 
The articles include below are: 
 

• “A Study in Transparency: The Open Government Directive, the Department of Labor, and the Open 
Data Principles,” Sunlight Foundation Blog (4/12/2010) 

• “Government Datasets That Facilitate Innovation,” Freedom to Tinker Blog (3/1/2010) 
• “Basic Data Format Lessons,” Freedom to Tinker Blog (3/2/2010) 
• “Labeling Dataset Contents,” Freedom to Tinker Blog (3/3/2010) 
• “Correcting Errors and Making Changes,” Freedom to Tinker Blog (3/8/2010) 
• “Best Practices for Government Datasets: Wrap-up,” Freedom to Tinker Blog  (3/12/2010) 
• “Drafting Guidelines for Government Data Catalogs,” Sunlight Labs Blog (3/29/2010) 

 
Links to all of these articles are available from here: http://bit.ly/9alnLq 



2 
 

A STUDY IN TRANSPARENCY: THE OPEN GOVERNMENT DIRECTIVE, THE DEPARTMENT 
OF LABOR, AND THE OPEN DATA PRINCIPLES 

 
By Daniel Schuman on 04/12/10 

 
Cabinet agencies (and others) released their Open Government Plans last week with much fanfare, mixed 
reviews, and many promises for the future. I want to focus on one initiative — the Department of Labor’s 
“Online Enforcement Database” — to highlight the strengths and weakness of what we’ve seen, and suggest 
some guidelines for going forward. 
 
Online Database Strengths and Weaknesses 
 
With the explosion at a mine in West Virginia last week, many questions are being asked about federal safety 
inspections. My colleague Anu Narayanswamy wrote on Monday, before the Online Enforcement Database was 
released, that the way the federal government releases data on mine safety makes it impossible to see how 
safety violations at one mine stack up against others. You cannot tell if the 500 safety violations in 2009 at this 
particular mine, for example, are typical for this industry. 
 
On Wednesday, the Labor Department released the Online Enforcement Database, which contains five major 
data sets, including one on mine safety. Anu’s follow-up article on Friday explained that “with mine safety data, 
released for the the first time in bulk [on Wednesday], users can search for mine inspection data by state or even 
zip code.” But she also reported the data sets are only in a partially downloadable format, and do not include 
“the kinds of violation and penalties levied on mines across the country.” In other words, it’s difficult to figure 
out what’s going on. 
 
It is the search results, and not the underlying database, that are downloadable in bulk. (“Bulk” access means 
that you can download all of the information at once, and not piecemeal.) The only way to get at the 
Enforcement Database’s information is to use its search tool, which has very limited capabilities. Users may 
search by state, agency, zip code, and by industry code. (DOL deserves credit for including the industry codes 
in a link from the search page.) So, a user cannot narrow the search range to a county, or a congressional district, 
or by the owner of a facility. Compare this to the search tool used at transparencydata.com, a new initiative 
from Sunlight that allows users to search a database on campaign contributions, that allows searching, sorting, 
and downloading in a multiplicity of ways. 
 
As mentioned before, the Online Enforcement Database itself is not available for download in bulk. There’s no 
way to look at all of the information the Labor Department has painstakingly gathered. And despite the wealth 
of information, a clunky search tool adds to the frustration. Without access to the supporting data, researchers 
cannot answer many questions. In fairness, the Labor Department says that bulk access and improved search 
tools are “coming soon,” but it would be very helpful to have a date to accompany this promise. Doing so would 
make the promise concrete and testable. 
 
I do not mean to pick on the Department of Labor, which made an effort in its Open Government Plan [PDF] to 
identify datasets for online publication and to set deadlines. Indeed, they stated they plan to take all data they 
collect and make it publicly available online and in downloadable formats, with appropriate caveats. Many 
agencies fell far short of DOL’s achievements. But DOL should go further. 
 
Open Data Principles 
 
Elsewhere I’ve pulled together resources (from Princeton and Sunlight Labs) on building good data sets, 
including drafting guidelines for government data catalogs. It’s important focus, however, at the fundamental 



3 
 

level of what it means when we talk about how government should publish data online, a.k.a. “open data 
principles.” As an attorney, I’m hardly qualified to talk about this, so I am fortunate that much of the heavy 
lifting was done at a conference in 2007. Afterward, my colleagues Clay and John and I worked on revising the 
open data principles, nine in number, and fleshed out a rough evaluation of when they are satisfied. 
 
When agencies think about how to make information available, they should look to these (draft) principles. 
They state, in short, that data should be: complete, primary, timely, accessible, machine processable, non 
discriminatory, non propriety, license free, and permanent. Resource to these principles by the agencies — and 
a better effort to comply with the directive’s requirement to identify all high-value data sets and set deadlines 
for online publication — would have turned the thus-far mixed results of the Open Government Directive into 
an unqualified success. There is still time to make that promise into a reality. Here are the 9 open data principles 
in a framework to evaluate the extent to which they are satisfied: 
       

Open Data 
Principle 

Awful execution Poor execution Satisfactory 
execution 

Good execution Great execution 

Complete 

selectively 
disclosed portions, 
complete scope of 
data unknown 

 bare-bones Excel 
spreadsheet 

Source material 
provided with 
formulas for 
derivative data  

Source Material Provided with Metadata, 
Aggregate data provided with formulas for 
their creation, data documentation 
available. 

Primary summary of 
aggregate statistics 

Aggregate statistics  bare-bones Excel 
spreadsheet 

data w/ collection 
methods documented 

data with collection methods documented, 
source documents provided 

Timely 

information 
released only after 
it has become inert 
or irrelevant. e.g. 
released one year 
after collection 

released one month 
after collection 

released one week 
after collection 

released one day after 
collection 

information disclosed as it is collected. 
Given control over collection, info also 
collected at most effective frequent interval. 

Accessible 

Paper FOIA-provided; 
behind search 
forms 

data format supports 
analysis and reuse 

Available through 
bulk access protocols 
such as FTP and 
Rsync with sufficient 
bandwidth to allow 
demand to be met, as 
well as available 
through a well-
documented API with 
good performance. 

Available through bulk access protocols 
with sufficient bandwidth and API 
functionality, alongside links and pointers 
to outside sources. 

Machine 
Processable 

Paper PDF, Scanned 
Images 

.csv, tab delimited 
data 

Documented API 
coupled with .csv, tab 
delimited data 

json or XML data dumps, well documented 
coupled with a well documented API 

Non 
Discriminatory 

In-person visit 
Neccessary to View 
Data, Data released 
selectively to 
specific parties 

Registration 
required to view 
data 

  No registration required to view or 
download data 

Non-proprietary 

Undocumented, 
proprietary format. 

Fairly well-known 
proprietary format, 
such as Microsoft 
Access. 

Format based on an 
open standard but 
with limited 
independent 
implementations. For 
example PDF, 
Semantic Web. 

Format based on 
Open Standard with 
multiple *different* 
implementations, for 
instance, CSV. 

Format based on an open standard with 
multiple, independent implementations that 
use the format. For example: HTML, XML, 
JSON. 

License Free 

Pay-for-use, or 
most restrictive 
TOS or EULA, with 
possibly unlawful 
restrictions 

Use with terms-of-
service, citation 
requirements, non-
commercial-use 
requirements 

No license specified. 
Terms of use as given 
in law (e.g. FEC 
data). 

Display of legislative 
terms of use in clear 
fashion alongside 
data 

Clearly labeled public domain, work of the 
government. 

Permanent 

Subject to 
indiscriminate or 
malicious deletion. 
no guarantee of 
permanence, 
information fully 
open to 
manipulation and 
removal. Non-
Digital 

Current data 
available but no 
archive. (E.g., a 
webcast stream but 
no file is an 
example) 

Archived for the term 
of the current 
Administration 

Plan in place for 
indefinite archival 

strong archival standards, frequent 
archiving, versioning, archives available on 
web 



4 
 

 
GOVERNMENT DATASETS THAT FACILITATE INNOVATION 

BY JOE CALANDRINO - POSTED ON MARCH 1ST, 2010 AT 4:41 PM 
 
There's a growing consensus that the government can increase its openness and transparency by publishing its 
raw data in bulk online. As several Freedom to Tinker contributors argued in Government Data and the 
Invisible Hand, publishing data empowers third party software developers to produce innovative new 
technologies that engage citizens and illuminate government's inner workings. With the establishment of 
Data.gov and the federal Open Government Initiative, federal agencies are quickly embracing a culture of 
machine-readable data release, and many states and municipalities are now following their lead. 
 
But how usable are these datasets for developers? The answer lies primarily in the structure and contents of the 
datasets themselves. While all data in digital form is technically machine-readable in some sense, the ease of 
use for machine-readable datasets can vary widely. In fact, machine-readability is just a baseline requirement: a 
developer can't start to work with a dataset until it's in this form. Once that minimum standard is met, the 
critical factor is how easy it is for developers to use the dataset in new, innovative ways. 
 
In this series of posts, we'll draw on our experience building applications that use government data to offer 
some thoughts about best practices government could follow in releasing data. By taking a few straightforward 
steps in preparing its datasets, government can make the data much more useful to developers. 
 
One key factor in determining ease of use for developers is the structure of the dataset, and that is the topic of 
our first post. Let's start with a trivial example: 
 
<BOOK>A Tale of Two Cities by Charles Dickens. Chapter 1. The Period. It was the best of times, it was the 
worst of times [...] The end.</BOOK> 
 
This is a "well-formed" XML version of Dicken's "A Tale of Two Cities" in its entirety. Though more usable 
than a PDF copy of the book, the XML document lacks basic structure and is not particularly helpful to a 
developer building tools to display or analyze the book. Compare that to: 
 
<BOOK> 
  <HEADER> 
    <TITLE>A Tale of Two Cities</TITLE> 
    <AUTHOR>Charles Dickens</AUTHOR> 
  </HEADER> 
  <BODY> 
    <CHAPTER NUMBER="1"> 
      <TITLE>The Period</TITLE> 
      <PARAGRAPH NUMBER="1"> 
        <SENTENCE NUMBER="1">It was the best of times [...]</SENTENCE> 
      </PARAGRAPH> 
      [...] 
    </CHAPTER> 
    [...] 
  </BODY> 
</BOOK> 
 
This data is far more structured, and a developer can take it and immediately do lots of new things. If the 
developer plans to build an interface for a new e-book reader for instance, it's easy to extract the component 



5 
 

parts of the book for appropriate formatting. With the less-structured version, the developer needs to guess 
where chapters, titles, and paragraphs begin and end. Because manual analysis is infeasible for large, complex 
datasets, developers who have only minimally-structured data will need to build automated processing scripts to 
make these guesses. Developing these scripts can be difficult and time-consuming, and data quality will suffer 
because the scripts will inevitably make mistakes. 
 
Whether a dataset facilitates innovative uses by developers is not a yes or no question but a matter of degree, 
and it depends largely on the quality of the data's structure and the needs of specific developers. In deciding 
what structure to add, agencies should consider who is in the best position to add various types of structure to 
the data. Sometimes, the agency is in the best position. Employees of an agency may amass specialized 
knowledge about the data, or the agency may already internally store the data with structural details like explicit 
database columns. In these cases, the agency can provide this structure with little effort, relieving developers 
from the potentially Herculean task of reconstructing these details. In other cases, the agency may have no 
significant advantage over private parties. 
 
Agencies should get as close to this dividing line as is reasonably possible to broaden the range of creative 
possibilities for application developers. The goal is to minimize structural obstacles that might prevent 
developers from tinkering with the data. Better structure leads to more innovative tools, a more transparent 
government, and a greater appreciation for the work done by federal agencies. 
 
Over our next several posts, we'll discuss choices that agencies make when releasing datasets and the ways 
these choices affect developers. Among other things, we'll explore basic data format lessons, data labeling, and 
correction/modification of datasets. Our goal is to turn this series into a best practices white paper for 
government use, and we'd appreciate any comments, suggestions, or insights from readers.



6 
 

 
BASIC DATA FORMAT LESSONS 

BY JOE CALANDRINO - POSTED ON MARCH 2ND, 2010 AT 7:45 AM 
 
When creating a dataset, the preferences of developers may not be obvious to those producing the dataset. 
Seemingly innocuous choices by data providers can lead to major headaches for developers. In this post, we 
discuss some of the more basic challenges that developers encounter when working with a dataset. These 
lessons may seem trivial to our more technical readers, but they're often learned through experience. Our hope 
is to reduce this learning curve by explaining how various practices affect developers. We'll focus on XML 
datasets, but many of the topics apply to CSV and other data formats. 
 
One of the hardest parts of working with a dataset can be figuring out what's in it and how it's organized. What 
data comes inside an "<FL47>" tag? Can a "<TEXT>" element ever contain a "<PARAGRAPH>" element? 
Developers rely heavily on documentation to explain the structure and contents of a dataset. When working 
with XML, one particularly relevant item is known as a schema. An XML schema is a separate file with an 
extension such as ".dtd" or ".xsd," and it provides a blueprint of the permitted structure for corresponding XML 
files. XML schema files tell developers where they can recover the information that they need from a dataset. 
These schema files and other documentation are often a necessity for developers, and they should be treated as 
such by data providers. Any XML file supplied by an agency should contain a complete URL address at which 
its schema can be found. Further, any link to an XML document on a government site should have prominent 
links near it for the corresponding schema file and reasonable documentation describing the contents of the 
dataset. 
 
XML schema files can be seen as an informal contract between data providers and developers, effectively 
promising that a dataset will match the specified structure. Unfortunately, sometimes datasets contain flaws 
causing them not to match that structure. Although experienced developers produce software that detects the 
existence of structural errors, these errors can be difficult or impossible for them to isolate and correct. The 
people in the best position to catch and fix structural errors are the people producing a dataset. Numerous 
validation tools exist for ensuring that an XML document is well-formed and valid—that is, the document is 
structurally sound and matches its XML schema. Prior to releasing a dataset, an agency should run a validator 
on it to check for structural flaws. This sanity check can take just a few moments for an agency but save hours 
of developer time. 
 
When deciding on the structure of a dataset, an agency should strive for simplicity while logically representing 
the underlying data. The addition of elements, attributes, or children in a schema can improve the quality and 
clarity of the dataset, but it can also add unnecessary complexity. When designing schemas, there's a tendency 
to include elements or other structure that will almost certainly go unused in practice. Schema designers may 
assume that extraneous items do no harm, but developers must cautiously account for them if allowed by 
schema. The result can be wasted developer time and increased software complexity. The true cost of various 
structural choices is not just the time necessary to encode these choices in a schema but also the burden these 
choices impose on developers. Additional structural complexity must provide a justifiable benefit. 
 
In some cases, however, the addition of elements or attributes is not only justifiable but highly desirable for 
developers: logically distinct pieces of data should appear in separate XML elements or attributes. Suppose that 
a developer wishes to access a piece of data in a dataset. If the data is combined with other information, the 
developer will need to figure out how to extract it from the combined field. This extraction can be difficult, 
time-consuming, and prone to errors. For example, assume that a data provider includes the following element: 
 
<DOCINFO>Doc No. 2001345--Released 01-01-2001</DOCINFO> 
 



7 
 

To extract the document number, a developer might look for all characters following "No." but before a dash. 
While this is straightforward enough, other parts of the same or future datasets might instead use the document 
number format "2001-345" or separate the document number and release date with a space rather than a double-
dash. Neither case would lead to invalid XML, but both would break the developer's extraction tool. Now 
consider this alternative: 
 
<DOCINFO> 
  <DOC_NO>2001345</DOC_NO> 
  <RELEASE_DATE>01-01-2001</RELEASE_DATE> 
</DOCINFO> 
 
Using extra elements to separate logically distinct data can prevent extraction errors. This lesson often applies 
even when the combined data is related. For example, the version number 5.3.2 could be broken into major 
version 5, minor version 3, and revision 2. In general, agencies should separate such items themselves when 
they can do so more easily than developers. 
 
Even when the basic structure of a dataset is ideal, choices about how to provide data inside this structure can 
affect developers. Developers thrive on consistency. Suppose that a dataset details various costs. Consider all 
possible ways of writing cost: $4,300, 5938.37, 74 dollars and 63 cents, etc. Unless an agency decides on, 
documents, and adheres to a standard format, developers' software must handle a large number of possibilities 
to avoid unexpected surprises. Consistency in a dataset can make a developer's life far easier, and it reduces the 
possibility that surprises will break an application. Note that a schema can be helpful for enforcing consistency 
for certain fields—for example, cost might be defined as a decimal field with a constraint on the number of 
fractional digits. 
 
Redundant information is another source of difficulty for developers. Redundancy can appear in numerous ways. 
Suppose that a dataset contains the element "<VERSION>Version 5</VERSION>." The word "Version" is 
unnecessary, and developers must go through additional trouble to extract the version number. In so doing, 
developers must consider the possibility that "Version" could be misspelled, abbreviated, or omitted. Supplying 
a version number alone ("<VERSION>5</VERSION>") would avoid this issue altogether. More subtly, 
suppose that a dataset contains all bills introduced in Congress on a certain date: 
 
<INTRODUCED_BILLS> 
  <DATE>11-12-2014</DATE> 
  <HOUSE_BILLS DATE="NOV 12, 2014"> 
    [...] 
  </HOUSE_BILLS> 
  <SENATE_BILLS DATE="NOV 12, 2014"> 
    [...] 
  </SENATE_BILLS> 
</INTRODUCED_BILLS> 
 
Date information appears three times even though it must be the same in all cases. The more often a piece of 
information appears in a dataset, the more likely that inconsistencies will occur. These inconsistencies can lead 
to software errors requiring manual resolution. While redundancy can serve as a sanity check for errors, 
agencies typically should perform this check themselves if possible before releasing the data. After all, the 
agency is in the best position to fix inconsistencies. Unless well-justified, agencies should avoid redundancy. 
 



8 
 

Processing datasets often requires a significant amount of developer time, so adherence to even basic rules can 
dramatically increase innovation. What other low-level recommendations do FTT readers have for non-
developers producing datasets? 
 
Tomorrow, we'll discuss how labeling elements in a dataset can help developers. 



9 
 

BASIC DATA FORMAT LESSONS 
BY JOE CALANDRINO - POSTED ON MARCH 2ND, 2010 AT 7:45 AM 

 
When creating a dataset, the preferences of developers may not be obvious to those producing the dataset. 
Seemingly innocuous choices by data providers can lead to major headaches for developers. In this post, we 
discuss some of the more basic challenges that developers encounter when working with a dataset. These 
lessons may seem trivial to our more technical readers, but they're often learned through experience. Our hope 
is to reduce this learning curve by explaining how various practices affect developers. We'll focus on XML 
datasets, but many of the topics apply to CSV and other data formats. 
 
One of the hardest parts of working with a dataset can be figuring out what's in it and how it's organized. What 
data comes inside an "<FL47>" tag? Can a "<TEXT>" element ever contain a "<PARAGRAPH>" element? 
Developers rely heavily on documentation to explain the structure and contents of a dataset. When working 
with XML, one particularly relevant item is known as a schema. An XML schema is a separate file with an 
extension such as ".dtd" or ".xsd," and it provides a blueprint of the permitted structure for corresponding XML 
files. XML schema files tell developers where they can recover the information that they need from a dataset. 
These schema files and other documentation are often a necessity for developers, and they should be treated as 
such by data providers. Any XML file supplied by an agency should contain a complete URL address at which 
its schema can be found. Further, any link to an XML document on a government site should have prominent 
links near it for the corresponding schema file and reasonable documentation describing the contents of the 
dataset. 
 
XML schema files can be seen as an informal contract between data providers and developers, effectively 
promising that a dataset will match the specified structure. Unfortunately, sometimes datasets contain flaws 
causing them not to match that structure. Although experienced developers produce software that detects the 
existence of structural errors, these errors can be difficult or impossible for them to isolate and correct. The 
people in the best position to catch and fix structural errors are the people producing a dataset. Numerous 
validation tools exist for ensuring that an XML document is well-formed and valid—that is, the document is 
structurally sound and matches its XML schema. Prior to releasing a dataset, an agency should run a validator 
on it to check for structural flaws. This sanity check can take just a few moments for an agency but save hours 
of developer time. 
 
When deciding on the structure of a dataset, an agency should strive for simplicity while logically representing 
the underlying data. The addition of elements, attributes, or children in a schema can improve the quality and 
clarity of the dataset, but it can also add unnecessary complexity. When designing schemas, there's a tendency 
to include elements or other structure that will almost certainly go unused in practice. Schema designers may 
assume that extraneous items do no harm, but developers must cautiously account for them if allowed by 
schema. The result can be wasted developer time and increased software complexity. The true cost of various 
structural choices is not just the time necessary to encode these choices in a schema but also the burden these 
choices impose on developers. Additional structural complexity must provide a justifiable benefit. 
 
In some cases, however, the addition of elements or attributes is not only justifiable but highly desirable for 
developers: logically distinct pieces of data should appear in separate XML elements or attributes. Suppose that 
a developer wishes to access a piece of data in a dataset. If the data is combined with other information, the 
developer will need to figure out how to extract it from the combined field. This extraction can be difficult, 
time-consuming, and prone to errors. For example, assume that a data provider includes the following element: 
 
<DOCINFO>Doc No. 2001345--Released 01-01-2001</DOCINFO> 
 



10 
 

To extract the document number, a developer might look for all characters following "No." but before a dash. 
While this is straightforward enough, other parts of the same or future datasets might instead use the document 
number format "2001-345" or separate the document number and release date with a space rather than a double-
dash. Neither case would lead to invalid XML, but both would break the developer's extraction tool. Now 
consider this alternative: 
 
<DOCINFO> 
  <DOC_NO>2001345</DOC_NO> 
  <RELEASE_DATE>01-01-2001</RELEASE_DATE> 
</DOCINFO> 
 
Using extra elements to separate logically distinct data can prevent extraction errors. This lesson often applies 
even when the combined data is related. For example, the version number 5.3.2 could be broken into major 
version 5, minor version 3, and revision 2. In general, agencies should separate such items themselves when 
they can do so more easily than developers. 
 
Even when the basic structure of a dataset is ideal, choices about how to provide data inside this structure can 
affect developers. Developers thrive on consistency. Suppose that a dataset details various costs. Consider all 
possible ways of writing cost: $4,300, 5938.37, 74 dollars and 63 cents, etc. Unless an agency decides on, 
documents, and adheres to a standard format, developers' software must handle a large number of possibilities 
to avoid unexpected surprises. Consistency in a dataset can make a developer's life far easier, and it reduces the 
possibility that surprises will break an application. Note that a schema can be helpful for enforcing consistency 
for certain fields—for example, cost might be defined as a decimal field with a constraint on the number of 
fractional digits. 
 
Redundant information is another source of difficulty for developers. Redundancy can appear in numerous ways. 
Suppose that a dataset contains the element "<VERSION>Version 5</VERSION>." The word "Version" is 
unnecessary, and developers must go through additional trouble to extract the version number. In so doing, 
developers must consider the possibility that "Version" could be misspelled, abbreviated, or omitted. Supplying 
a version number alone ("<VERSION>5</VERSION>") would avoid this issue altogether. More subtly, 
suppose that a dataset contains all bills introduced in Congress on a certain date: 
 
<INTRODUCED_BILLS> 
  <DATE>11-12-2014</DATE> 
  <HOUSE_BILLS DATE="NOV 12, 2014"> 
    [...] 
  </HOUSE_BILLS> 
  <SENATE_BILLS DATE="NOV 12, 2014"> 
    [...] 
  </SENATE_BILLS> 
</INTRODUCED_BILLS> 
 
Date information appears three times even though it must be the same in all cases. The more often a piece of 
information appears in a dataset, the more likely that inconsistencies will occur. These inconsistencies can lead 
to software errors requiring manual resolution. While redundancy can serve as a sanity check for errors, 
agencies typically should perform this check themselves if possible before releasing the data. After all, the 
agency is in the best position to fix inconsistencies. Unless well-justified, agencies should avoid redundancy. 
 



11 
 

Processing datasets often requires a significant amount of developer time, so adherence to even basic rules can 
dramatically increase innovation. What other low-level recommendations do FTT readers have for non-
developers producing datasets? 
 
Tomorrow, we'll discuss how labeling elements in a dataset can help developers. 



12 
 

CORRECTING ERRORS AND MAKING CHANGES 
BY JOE CALANDRINO - POSTED ON MARCH 8TH, 2010 AT 8:45 AM 

 
Even cautiously edited datasets sometimes contain errors, and even meticulously produced schemas require 
refinement as circumstances change. While errors or changes create inconvenience for developers, most 
developers appreciate and prepare for their inevitability. Agencies should strive to do the same. A well-
developed strategy for fixes and changes can ease their burden on both developers and agencies. 
 
When agencies release data, developers ideally will interact with it in creative new ways. Given datasets 
containing megabytes to gigabytes of data, novel uses will reveal previously unnoticed errors. Knowledge of 
these errors benefits the agency as well as other developers using the data, so agencies should take steps to 
encourage error reporting. Labels in a dataset allow developers to specify errors efficiently and unambiguously. 
An easy-to-find channel for reporting errors, such as a prominently provided email address or web form, is also 
critical. Tracking down the contact information of the person responsible for a dataset can be difficult, and a 
well-known channel reduces this barrier to feedback. 
 
Upon learning of an issue in a dataset, an agency should correct the problem and release the corrected dataset in 
a timely manner. An important fact to keep in mind when correcting data is that numerous developers may have 
already downloaded and begun using the old flawed version. For these developers, even a minor modification 
can cause major issues if not done carefully. Agencies should think about two things: how they will make 
developers aware that the dataset has been modified and how they will change the dataset itself. The first point 
is sometimes ignored in spite of its importance. Not only should datasets contain version information, but 
agencies should also notify developers when the data that they rely on has changed. In particular, agencies 
should allow developers to subscribe to an email list or an RSS feed for specific datasets that details updates in 
a well-structured manner. These updates should clearly specify the dataset and version affected, a location 
where the updated dataset can be found, and a description of the changes to the dataset. When possible, these 
changes should be specified via a formal, structured description—for example, a diff output—as well as a brief 
prose explanation. 
 
Correction of dataset contents should proceed cautiously. Suppose that an application allows user to comment 
on parts of a document. If labels are in a dataset are not maintained consistently across versions, the developer 
may need to painstakingly map comments from the old data to the corresponding parts of the new dataset. 
Issues like this can be mitigated through several practices. First, an agency should seek to preserve labels across 
versions of a dataset when possible (alternatively, in some cases an agency might wish to change the labels but 
provide a mapping to assist developers). For example, a dataset might aggregate numerous documents, and a 
minor change in one document should not necessarily change the labels for the other documents. Recall the side 
note from our previous post that labels should be separate from ordering information. Corrections to a dataset 
may add, remove, or reorder items. Detaching order from labels can help agencies ensure label consistency 
across dataset versions. In addition, the last post and its comments discussed whether agencies should provide a 
label that is separate from its internally used agency label. This separation allows labels to remain consistent 
even when Subsection X becomes Section Y based on the internal agency labels. Note that these points about 
consistent labeling can be useful whenever a dataset could have multiple versions: for example, consistent 
labeling might be beneficial across various versions of a bill. 
 
Similarly, the structure that agencies use for datasets, the locations where the datasets are hosted, and other 
details of a dataset sometimes must change. Suppose that an agency releases various statistics each month. 
When the agency is asked to provide a new statistic, the new data may necessitate changes to the XML schema. 
Alternatively, the agency may decide to host data at the address 
"http://www.agency.gov/YEAR/MONTH/data.xml" rather than "http://www.agency.gov/MONTH-
YEAR/data.xml," causing issues for automated tools that periodically check for and download new data. To 



13 
 

reduce the adverse impact of these changes on developers, agencies should provide detailed notice of the 
changes as early as possible. Early notice gives developers time to modify their tools. These notifications can 
occur via an email list or RSS feed providing details of the changes in a clear, consistent format. 
 
The possibility of changes and their impact on developers should be taken into account at all stages of the data 
production process. Suppose an agency adds an element to a schema that specifies a unique individual, but the 
schema may someday need to specify a corporation instead. Although the agency should not speculatively add 
unnecessary elements to the schema, it should be mindful of possible changes when designing the rest of the 
schema. Various design choices may minimize the impact of a change if necessary later. Agencies should also 
avoid the urge to alter a schema dramatically each time it requires a minor change. A major overhaul—even 
when done to clean up the schema—may require equally dramatic changes in tools utilizing the data. To ensure 
that developers notice changes to XML schemas, both schema files and datasets should contain a prominent 
schema version number. If an agency changes the location where data is hosted, it should consider temporarily 
using aliases so that requests using old addresses automatically take you to the correct data. Once the old 
addresses are phased out, agencies should use a standard HTTP 404 status code to indicate that the requested 
data was not found at the specified location. Simply supplying a "Not Found" page without this standard code 
could make life harder for developers whose automated tools must instead parse this page. 
 
When making changes, agencies should consider soliciting input directly from developers. Because the 
preferences of developers might not be obvious, this input can lead to choices that help developers without 
increasing the burden on agencies. In fact, developers may even come up with ideas that make life easier for an 
agency. 
 
Our next and final post in this series will discuss a handful of additional issues for agencies to consider. 



14 
 

 
BEST PRACTICES FOR GOVERNMENT DATASETS: WRAP-UP 

BY JOE CALANDRINO - POSTED ON MARCH 12TH, 2010 AT 9:26 AM 
 
For our final post in this series, we'll discuss several issues not touched on by earlier posts, including data 
signing and the use of certain non-text file formats. The relatively brief discussions of these topics should not be 
interpreted as an indicator of their importance. The topics simply did not fit cleanly into earlier posts. 
 
One significant omission from earlier posts is the issue of data signing with digital signatures. Before discussing 
this issue, let's briefly discuss what a digital signature is. Suppose that you want to email me an IOU for $100. 
Later, I may want to prove that the IOU came from you—it's of little value if you can claim that I made it up. 
Conversely, you may want the ability to prove whether the document has been altered. Otherwise, I could claim 
that you owe me $100,000. 
 
Digital signatures help in proving the origin and authenticity of data. These signatures require that you create 
two related big numbers, known as keys: a private signing key (known only by you) and a public verification 
key. To generate a digital signature, you plug the data and your signing key into a complicated formula. The 
formula spits out another big number known a digital signature. Given the signature and your data, I can use the 
verification key to prove that the data came unmodified from you. Similarly, nobody can credibly sign modified 
data without your signing key—so you should be very careful to keep this key a secret. 
 
Developers may want to ensure the authenticity of government data and to prove that authenticity to users. At 
first glance, the solution seems to be a simple application of digital signatures: agencies sign their data, and 
anyone can use the signatures to authenticate an agency's data. In spite of their initially steep learning curve, 
tools like GnuPG provide straightforward file signing. In practice, the situation is more complicated. First, an 
agency must decide what data to sign. Perhaps a dataset contains numerous documents. Developers and other 
users may want signatures not only for the full dataset but also for individual documents in it. 
 
Once an agency knows what to sign, it must decide who will perform the signing. Ideally, the employee 
producing the dataset would sign it immediately. Unfortunately, this solution requires all such employees to 
understand the signature tools and to know the agency's signing key. Widespread distribution of the signing key 
increases the risk that it will be accidentally revealed. Therefore, a central party is likely to sign most data. Once 
data is signed, an agency must have a secure channel for delivering the verification key to consumers of the 
data—users cannot confirm the authenticity of signed data without this key. While signing a given file with a 
given key may not be hard, surrounding issues are more tricky. We offer no simple solution here, but further 
discussion of this topic between government agencies, developers, and the public could be useful for all parties. 
 
Another issue that earlier posts did not address is the use of non-text spreadsheet formats, including Microsoft 
Excel's XLS format. These formats can sometimes be useful because they allow the embedding of formulas and 
other rich information along with the data. Unfortunately, these formats are far more complex than raw text 
formats, so they present a greater challenge for automated processing tools. A comma-separated value (CSV) 
file is a straightforward text format that contains values separated by line breaks and commas. It provides an 
alternative to complicated spreadsheet formats. For example, the medal count from the 2010 Winter Olympics 
in CSV would be: 
 
  Country,Gold,Silver,Bronze,Total 
  USA,9,15,13,37 
  Germany,10,13,7,30 
  Canada,14,7,5,26 
  Norway,9,8,6,23 



15 
 

  ... 
 
Fortunately, the release of data in one format does not preclude its release in another format. Most spreadsheet 
programs provide an option to save data in CSV form. Agencies should release spreadsheet data in a textual 
format like CSV by default, but an agency should feel free to also release the data in XLS or other formats. 
 
Similarly, agencies will sometimes release large files or groups of files in a compressed or bundled format (for 
example, ZIP, TAR, GZ, BZ). In these cases, agencies should prominently specify where users can freely obtain 
software and instructions for extracting the data. Because so many means of compressing and bundling files 
exist, agencies should not presume that the necessary tools and steps are obvious from the data files themselves. 
 
The rules suggested throughout this series should be seen as best practices rather than hard-and-fast rules. We 
are still in the process of fleshing out several of these ideas ourselves, and exceptional cases sometimes justify 
exceptional treatment. In unusual cases, an agency may need to deviate from traditional best practices, but it 
should carefully consider (and perhaps document) its rationale for doing so. Rules are made to be broken, but 
they should not be broken for mere expedience. 
 
Our hope is that this series will provide agencies with some points to consider prior to releasing data. Because 
of Data.gov and the increasing traction of openness and transparency initiatives, we expect to see many more 
datasets enter the public domain in the coming years. Some agencies will approach the release of bulk data with 
minimal previous experience. While this poses a challenge, it also present an opportunity for committed 
agencies to institute good practices early, before bad habits and poor-quality legacy datasets can accumulate. 
When releasing new datasets, agencies will make numerous conscious and unconscious choices that impact 
developers. We hope to help agencies understand developers' challenges when making these choices. 
 
After gathering input from the community, we plan to create a technical report based on this series of posts. 
Thanks to numerous readers for insightful feedback; your comments have influenced and clarified our thoughts. 
If any FTT readers inside or outside of government have additional comments about this post or others, please 
do pass them along. 



16 
 

 
DRAFTING GUIDELINES FOR GOVERNMENT DATA CATALOGS 

 
WRITTEN BY LUIGI MONTANEZ; 03/29/2010 12:49 P.M.;  

WRITTEN WITH DAVID JAMES. 
 
A major focus of the Sunlight Labs is to push government to publish its data online. In recent months, we've 
gained in-depth familiarity with government data catalogs through our work on the National Data Catalog. The 
most prominent example of a data catalog is data.gov. Since its launch last year, a handful of states and cities 
have followed suit with their own efforts. As more data catalogs come online, we want to make sure their 
contents are open and exchangeable. We want to determine how to best structure the data catalog itself, and we 
want to ensure that the metadata it contains -- the data about the data -- exists in the most accessible way 
possible. 
 
Last week, Clay posted three challenges for the community to tackle, and this is challenge #3. We're looking to 
start this conversation now and move towards consensus within a few months. I was at Transparency Camp, 
digging deeper into this topic, putting us on the path to make recommendations that governments can adopt 
quickly. 
 
Resource-Oriented Architecture 
 
A data catalog lives on the Web, so it makes sense that it embrace the architecture of the Web. A simple Web 
site with a few pages is good for citizen use, but doesn't lend itself to being interoperable. As such, we strongly 
recommend following the Resource Oriented Architecture (ROA) guidelines. When applied to the concept of a 
government data catalog, ROA means: 
 
    * Resources that represent the data sources, agencies, and jurisdictions (if there are more than one) should 
exist. 
    * Each resource should have a unique URI, so that each one can be addressed individually. 
    * Resources should be made available in both human-friendly (HTML) and machine-readable formats (such 
as XML or JSON). 
    * Content negotiation should be used to serve the resource correctly depending on the user agent. 
 
Defining a Vocabulary 
 
Let's turn to the metadata that describes a particular government data source. Existing government data catalogs 
like data.gov have already established some best practices. But going back through the Internet's history, it's 
helpful to contemplate the work of the Dublin Core, which over a decade ago published a set of fifteen metadata 
elements for describing online resources. The Dublin Core spec applies to a wide range of things published 
online, from videos to academic papers to datasets. The fifteen elements forming the spec give us a good 
starting point, and remind us how similar online government data is to any other kind of resource published 
online. Some elements are not fully applicable (Language and Contributor, for example). Others can be broken 
up into several elements. Coverage can mean a physical geographic area, a political jurisdiction, or a period of 
time. 
 
Going from theoretical to practical, let's look at some sample data pages for existing data catalogs: 
 
    * data.gov 
    * data.dc.gov 
    * data.gov.uk 



17 
 

    * utah.gov/data 
 
Looking at those four examples, we begin to see a lot of similarities among the catalogs and with Dublin Core. 
From these, we propose a preliminary vocabulary: 
 
Element Name  Description 
 
Title    Title of data source. 
Description   Short description of data source. 
URL    Permanent, unique URL that contains this metadata. Can be self-referential. 
Type    Is the data source a dataset, API, or online database? 
Downloads   File format/URL pairs that point to data files. 
Created   Creation date of the data source. 
Released   Release date of the data source. 
Last Updated   Update date of the data source. 
Update Frequency  How often the data is updated 
Creator   Entity (agency, department, or organization) that created the data. 
Publisher   Entity that published the data. 
Maintainer   Entity that maintains the data. 
Jurisdiction   Political jurisdiction of the data. 
Time Period   The time period the data refers to. 
Grouping   Can the data be grouped with a larger set of similar data? Recommended for data sets 

 scoped to a time period or jurisdiction. 
License   The license under which the data set is released. 
Documentation  Any documentation, such as a data dictionary, or a reference (URL) to that 

documentation. 
 
This vocabulary forms a base-level set of metadata. Individual data catalogs can and should publish more 
elements as appropriate, but serious efforts should be put into ensuring that the fifteen elements above are 
present. 
 
The Formats 
 
With a vocabulary defined, we can move to the actual data formats to represent an entry in a government data 
catalog. We don't need to just choose one. Instead, we can map our general vocabulary to several existing data 
format standards: 
 
    * XML: Maps easily to the vocabulary defined above. Loved by the enterprise. 
    * JSON: XML's lighter-weight alternative, loved by modern Web developers (and the Sunlight Labs). 
    * CSV: A good compromise between machine-friendliness and human-readability. 
    * Microformats: Can act as an easy-to-implement solution since these can be placed on plain ol' Web sites 
with only a little bit of effort. 
 
Lastly, and possibly most importantly, we need a data format to represent updates to entries in a data catalog. 
For that, we recommend the Atom Syndication Format. An individual entry in the Atom feed would contain the 
unique URL identifier and any updated elements. The entry should use any one of the four formats above, with 
a bias towards XML, since Atom itself is XML. 
 
 
 



18 
 

So in summary, the preliminary proposal is: 
 
    * Ensure that you have enough metadata to closely follow the vocabulary. 
    * If publishing the catalog as a Web site, use the Microformat on the data detail pages. 
    * If publishing an API, use XML or JSON in conjunction with Resource-Oriented principles. 
    * If publishing the data catalog as a bulk download, use XML, JSON, or CSV. 
    * To publish updates of entries in the catalog, use Atom. 
 
We'll be fleshing out examples of these data formats in the Sunlight Labs Wiki over the coming weeks. I'll be 
working with the good people of Socrata, who announced their SODA API at TransparencyCamp on Saturday, 
and any other folks interested. 


